Strengthening the SDP Relaxation of AC Power Flows with Convex Envelopes, Bound Tightening, and Lifted Nonlinear Cuts
نویسندگان
چکیده
This paper considers state-of-the-art convex relaxations for the AC power flow equations and introduces valid cuts based on convex envelopes and lifted nonlinear constraints. These valid linear inequalities strengthen existing semidefinite and quadratic programming relaxations and dominate existing cuts proposed in the literature. Combined with model intersection and bound tightening, the new linear cuts close 8 of the remaining 16 open test cases in the NESTA archive for the AC Optimal Power Flow problem.
منابع مشابه
Strengthening Convex Relaxations with Bound Tightening for Power Network Optimization
Convexification is a fundamental technique in (mixed-integer) nonlinear optimization and many convex relaxations are parametrized by variable bounds, i.e., the tighter the bounds, the stronger the relaxations. This paper studies how bound tightening can improve convex relaxations for power network optimization. It adapts traditional constraintprogramming concepts (e.g., minimal network and boun...
متن کاملMatrix Minor Reformulation and SOCP-based Spatial Branch-and-Cut Method for the AC Optimal Power Flow Problem
Alternating current optimal power flow (AC OPF) is one of the most fundamental optimization problems in electrical power systems. It can be formulated as a semidefinite program (SDP) with rank constraints. Solving AC OPF, that is, obtaining near optimal primal solutions as well as high quality dual bounds for this non-convex program, presents a major computational challenge to today’s power ind...
متن کاملThe QC Relaxation: Theoretical and Computational Results on Optimal Power Flow
Convex relaxations of the power flow equations and, in particular, the Semi-Definite Programming (SDP) and SecondOrder Cone (SOC) relaxations, have attracted significant interest in recent years. The Quadratic Convex (QC) relaxation is a departure from these relaxations in the sense that it imposes constraints to preserve stronger links between the voltage variables through convex envelopes of ...
متن کاملLift-and-Project Cuts for Mixed Integer Convex Programs
This paper addresses the problem of generating cuts for mixed integer nonlinear programs where the objective is linear and the relations between the decision variables are described by convex functions defining a convex feasible region. We propose a new method for strengthening the continuous relaxations of such problems using cutting planes. Our method can be seen as a practical implementation...
متن کاملOn Valid Inequalities for Quadratic Programming with Continuous Variables and Binary Indicators
In this paper we study valid inequalities for a set that involves a continuous vector variable x ∈ [0, 1], its associated quadratic form xx , and binary indicators on whether or not x > 0. This structure appears when deriving strong relaxations for mixed integer quadratic programs (MIQPs). Valid inequalities for this set can be obtained by lifting inequalities for a related set without binary v...
متن کامل